汇川 H5U 系列控制器 内置 Modbus 协议说明

协议驱动名称建议按通信网络类型分别命名为:

 $INOVANCE_H5U_ModbusRTU$

INOVANCE_H5U_ModbusTCP

版本	日期	作者	说明
V3.0	2019-10-16	MGJ	增加通讯格式说明,对外发布

目 录

目 录	2
概述:	3
1、MODBUS 协议支持的功能码:	3
2、H5U 控制器支持外部访问的软元件:	4
3、软元件和变量的地址定义:	4
3、MODBUSRTU 通讯帧格式说明	5
3.1 命令码 0x01(01)/0x02(02);读线圈	6
3.2 命令码 0x03(03)/0x04(04): 读寄存器	7
3.3 命令码 0x05(05)。写单线圈	8
3.4 命令码 0x06 (06): 写单个寄存器	9
3.5 命令码 0x0f(15):写多个线圈	10
3.6 命令码 0x10 (16): 写多个寄存器	11
3.7 错误响应帧	12
4、MODBUSTCP 通讯帧格式说明	13
4.1 命令码 0x01(01)/0x02(02): 读线圈	13
4.2 命令码 0x03(03)/0x04(04)。读寄存器	15
4.3 命令码 0x05(05)。写单线圈	16
4.4 命令码 0x06 (06): 写单个寄存器	17
4.5 命令码 0x0f(15):写多个线圈	18
4.6 命令码 0x10 (16): 写多个寄存器	19
4.7 错误响应帧	20

概述:

本文档旨在说明将 H5U 系列 PLC 作为 MODBUS 从站进行访问时,需采用的通讯格式进行说明,并对访问其中各种软元件和变量的索引编址方式进行了说明,便于 MODBUS 主站侧的编程。

本文介绍了基于 RS485 网络的 ModbusRTU、基于以太网的 ModbusTCP 两种通信帧格式的说明。用于 HMI、SCADA 等 Host 设备访问汇川公司 H5U 系列控制器的通讯驱动设计。

通信访问的主要有 bit 型和 word 型两种变量。按照行业惯例,本文中将 bit 型变量有时称为"线圈"或"触点",将 word 型变量则称为"寄存器",以方便用户理解。

1、Modbus 协议支持的功能码:

作为 MODBUS 主站和 MODBUS 从站时,支持的功能码见下表:

(1) 主站支持的功能码:

功能码	定义
0x01	读线圈
0x02	读线圈(同 0x01)
0x03	读寄存器
0x04	读寄存器(同 0x03)
0x05	写单线圈
0x06	写单寄存器
0x0f	写多线圈
0x10	写多寄存器

(2) 从站支持的功能码:

功能码	定义
0x01	读线圈
0x02	读线圈(同 0x01)
0x03	读寄存器
0x04	读寄存器(同 0x03)
0x05	写单线圈
0x06	写单寄存器
0x0f	写多线圈
0x10	写多寄存器
0x80-0xFF	标准 Modbus 错误功能码

2、H5U 控制器支持外部访问的软元件:

H5U 系列控制器支持 M/B/S/X/Y 等 bit 型变量(也称线圈)的访问、D/R 等 word 型变量的访问;

其中 M/B/S/X/Y 等 bit 型变量的访问,是以不同的地址偏移来区分的,D/R 等 word 型变量的访问,也是以不同的地址偏移来区分的;

H5U 控制器内部 W 元件,不支持通信访问。

3、软元件和变量的地址定义:

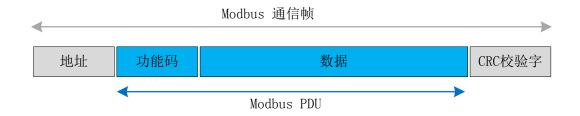
作为 MODBUS 从站时,支持线圈和寄存器访问,线圈和寄存器的地址定义如下:

1、线圈、位元件、位变量地址定义:

变量名称	数量	地址范围定义	说明
M0-M7999	8000	0x0000-0x1F3F (0-7999)	
B0-B32767	32768	0x3000-0xAFFF (12288-45055)	
S0-S4095	4096	0xE000-0xEFFF (57344-61439)	
X0-X1777 (8 进制)	1024	0xF800-0xFBFF (63488-64511)	
Y0-Y1777 (8 进制)	1024	0xFC00-0xFFFF (64512-65535)	

注:

2、寄存器、字元件、字变量地址定义:


变量名称	数量	起始地址	说明
D0-D7999	8000	0x0000-0x1F3F (0-7999)	
R0-R32767	32768	0x3000-0xAFFF (12288-45055)	

注:

(1)、作为通信从站,当接收到主站发送的通信帧结构错误、不支持的控制字、寄存器地址错误、数据超限错误等,就会回复"错误响应"帧。

3、ModbusRTU 通讯帧格式说明

本协议说明定义了 H5U 传输数据单元的内容和数据格式、属性。对应简单的 RS485 网络传输的数据,如下图所示的 PDU 部分,其他部分遵循 Modbus 通信帧标准定义:

3.1 命令码 0x01 (01) /0x02 (02): 读线圈

请求帧格式:从机地址+0x01/0x02+线圈起始地址+线圈数量+CRC 检验

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x01/0x02(命令码)	1 个字节	读线圈
3	线圈起始地址	2 个字节	高位在前,低位在后,见线圈编址
4	线圈数量	2 个字节	高位在前,低位在后(N)。N 最大为 2000
5	CRC 校验	2 个字节	高位在前,低位在后

响应帧格式: 从机地址+0x01/0x02+字节数+线圈状态+CRC 检验

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x01/0x02(命令码)	1 个字节	读线圈
3	字节数	1 个字节	值: [(N+7)/8]
		[(N+7)/8] 个字节	每8个线圈合为一个字节,最后一个若不足8位,未
4	线圈状态		定义部分填 0。前 8 个线圈在第一个字节,最地址最
			小的线圈在最低位。依次类推
5	CRC 校验	2个字节	高位在前,低位在后

3.2 命令码 0x03 (03) /0x04 (04): 读寄存器

请求帧格式:从机地址+0x03/0x04+寄存器起始地址+寄存器数量+CRC 检验

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x03/0x04(命令码)	1 个字节	读寄存器
3	寄存器起始地址	2 个字节	高位在前,低位在后,见寄存器编址
4	寄存器数量	2 个字节	高位在前,低位在后(N)。N 最大为 125
5	CRC 校验	2 个字节	高位在前,低位在后

响应帧格式: 从机地址+0x03/0x04+字节数+寄存器值+CRC 检验

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x03/0x04(命令码)	1 个字节	读寄存器
3	字节数	1 个字节	值: N*2
4	寄存器值	N*2 个字节	每两字节表示一个寄存器值,高位在前低位在后。
			寄存器地址小的排在前面
5	CRC 校验	2 个字节	高位在前,低位在后

3.3 命令码 0x05 (05): 写单线圈

请求帧格式: 从机地址+0x05+线圈地址+线圈状态+CRC 检验

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x05(命令码)	1 个字节	写单线圈
3	线圈地址	2 个字节	高位在前,低位在后,见线圈编址
4	线圈状态	2 个字节	高位在前,低位在后。非 0 即为有效
5	CRC 校验	2 个字节	高位在前,低位在后

响应帧格式: 从机地址+0x05+线圈地址+线圈状态+CRC 检验

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x05(命令码)	1 个字节	写单线圈
3	线圈地址	2 个字节	高位在前,低位在后,见线圈编址
4	线圈状态	2 个字节	高位在前,低位在后。非 0 即为有效
5	CRC 校验	2 个字节	高位在前,低位在后

3.4 命令码 0x06 (06): 写单个寄存器

请求帧格式: 从机地址+0x06+寄存器地址+寄存器值+CRC 检验

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x06(命令码)	1 个字节	写单寄存器
3	寄存器地址	2 个字节	高位在前,低位在后,见寄存器值编址
4	寄存器值	2 个字节	高位在前,低位在后。非 0 即为有效
5	CRC 校验	2 个字节	高位在前,低位在后

响应帧格式: 从机地址+0x06+寄存器地址+寄存器值+CRC 检验。

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x06(命令码)	1 个字节	写单寄存器
3	寄存器地址	2 个字节	高位在前,低位在后,见寄存器编址
4	寄存器值	2 个字节	高位在前,低位在后。非 0 即为有效
5	CRC 校验	2 个字节	高位在前,低位在后

3.5 命令码 0x0f (15): 写多个线圈

请求帧格式: 从机地址+0x0f+线圈起始地址+线圈数量+字节数+线圈状态+CRC 检验。

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x0f(命令码)	1 个字节	写多个单线圈
3	线圈起始地址	2 个字节	高位在前,低位在后,见线圈编址
4	线圈数量	2 个字节	高位在前,低位在后(N)。N 最大为 1968
5	字节数	1 个字节	值: 值: [(N+7)/8]
6	线圈状态	[(N+7)/8] 个字节	每8个线圈合为一个字节,最后一个若不足8位,未 定义部分填0。前8个线圈在第一个字节,最地址最 小的线圈在最低位。依次类推
7	CRC 校验	2 个字节	高位在前,低位在后

响应帧格式: 从机地址+0x0f+线圈起始地址+线圈数量+CRC 检验

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x0f(命令码)	1 个字节	写多个单线圈
3	线圈起始地址	2 个字节	高位在前,低位在后,见线圈编址
4	线圈数量	2 个字节	高位在前,低位在后。
5	CRC 校验	2 个字节	高位在前,低位在后

3.6 命令码 0x10 (16): 写多个寄存器

请求帧格式: 从机地址+0x10+寄存器起始地址+寄存器数量+字节数+寄存器值+CRC 检验。

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x10(命令码)	1 个字节	写多个寄存器
3	寄存器起始地址	2 个字节	高位在前,低位在后,见寄存器编址
4	寄存器数量	2 个字节	高位在前,低位在后(N)。N 最大为 123
5	字节数	1 个字节	值: N*2
6	寄存器值	N*2	
7	CRC 校验	2 个字节	高位在前,低位在后

响应帧格式:从机地址+0x10+线圈起始地址+线圈数量+CRC 检验。

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	0x10(命令码)	1 个字节	写多个寄存器
3	寄存器起始地址	2 个字节	高位在前,低位在后,见寄存器编址
4	寄存器数量	2 个字节	高位在前,低位在后。
5	CRC 校验	2 个字节	高位在前,低位在后

3.7 错误响应帧

作为通信从站,控制器接收到主站发送的通信帧结构错误、不支持的控制字、寄存器地址错误、数据超限错误等,就会回复"错误响应"帧。

错误响应: 从机地址+(命令码+0x80)+错误码+CRC 校验。

本错误帧适合所有的操作命令帧。

序号	数据(字节)意义	字节数量	说明
1	从机地址	1 个字节	取值 1~247
2	命令码+0x80	1 个字节	错误命令码
3	错误码	1 个字节	1~4
4	CRC 校验	2 个字节	高位在前,低位在后

4、ModbusTCP 通讯帧格式说明

在以 TCP/IP 网络中,ModbusTCP 通信帧的端口号是: 502

从站的地址判别,是以 IP 地址作为主站访问本站的判别依据,而不是以通信帧中的"从机地址"作为判断依据;

从站在回答帧时, "事务元标识符"和"单元标识符"字段会原样返回主站请求帧中对应字段的数值。

4.1 命令码 0x01 (01) /0x02 (02): 读线圈

请求帧格式: 事务元标识符+协议标识符+长度+单元标识符+0x01/0x02+线圈起始地址+线圈数量

序号	数据(字节)意义	字节数量	说明
1	事务元标识符	2 个字节	MODBUS 请求/响应事务处理的识别码
2	协议标识符	2 个字节	0=MODBUS 协议
3	长度	2 个字节	以下字节的数量
4	单元标识符	1 个字节	主站请求标识符
5	0x01/0x02(命令码)	1 个字节	读线圈
6	线圈起始地址	2 个字节	高位在前,低位在后,见线圈编址
7	线圈数量	2 个字节	高位在前,低位在后(N)。N 最大为 2000

响应帧格式: 事务元标识符+协议标识符+长度+单元标识符+0x01/0x02+字节数+线圈状态

序号	数据(字节)意义	字节数量	说明
1	事务元标识符	2个字节	MODBUS 请求/响应事务处理的识别码
2	协议标识符	2 个字节	0=MODBUS 协议
3	长度	2 个字节	以下字节的数量
4	单元标识符	1 个字节	复制主站请求标识符
5	0x01/0x02(命令码)	1 个字节	读线圈
6	字节数	1 个字节	值: [(N+7)/8]

序号	数据(字节)意义	字节数量	说明
		[(N+7)/8] 个字节	每8个线圈合为一个字节,最后一个若不足8位,未
7	线圈状态		定义部分填 0。前 8 个线圈在第一个字节,最地址最
		1.4.1	小的线圈在最低位。依次类推

4.2 命令码 0x03 (03) /0x04 (04): 读寄存器

请求帧格式:事务元标识符+协议标识符+长度+单元标识符+0x03/0x04+寄存器起始地址+寄存器数量

序号	数据(字节)意义	字节数量	说明
1	事务元标识符	2 个字节	MODBUS 请求/响应事务处理的识别码
2	协议标识符	2 个字节	0=MODBUS 协议
3	长度	2 个字节	以下字节的数量
4	单元标识符	1 个字节	主站请求标识符
5	0x03/0x04(命令码)	1 个字节	读寄存器
6	寄存器起始地址	2 个字节	高位在前,低位在后,见寄存器编址
7	寄存器数量	2 个字节	高位在前,低位在后(N)。N 最大为 125

响应帧格式: 事务元标识符+协议标识符+长度+单元标识符+0x03/0x04+字节数+寄存器值

序号	数据(字节)意义	字节数量	说明
1	事务元标识符	2 个字节	MODBUS 请求/响应事务处理的识别码
2	协议标识符	2 个字节	0=MODBUS 协议
3	长度	2 个字节	以下字节的数量
4	单元标识符	1 个字节	复制主站请求标识符
5	0x03/0x04(命令码)	1 个字节	读寄存器
6	字节数	1 个字节	值: N*2
7	寄存器值	N*2 个字节	每两字节表示一个寄存器值,高位在前低位在后。
			寄存器地址小的排在前面

4.3 命令码 0x05 (05): 写单线圈

请求帧格式:事务元标识符+协议标识符+长度+单元标识符+0x05+线圈地址+线圈状态

序号	数据(字节)意义	字节数量	说明	
1	事务元标识符	2 个字节	MODBUS 请求/响应事务处理的识别码	
2	协议标识符	2 个字节	0=MODBUS 协议	
3	长度	2 个字节	以下字节的数量	
4	单元标识符	1 个字节	主站请求标识符	
5	0x05(命令码)	1 个字节	写单线圈	
6	线圈地址	2 个字节	高位在前,低位在后,见线圈编址	
7	线圈状态	2 个字节	高位在前,低位在后。非 0 即为有效	

响应帧格式:事务元标识符+协议标识符+长度+单元标识符+0x05+线圈地址+线圈状态

序号	数据(字节)意义	字节数量	说明	
1	事务元标识符	2 个字节	MODBUS 请求/响应事务处理的识别码	
2	协议标识符	2 个字节	0=MODBUS 协议	
3	长度	2 个字节	以下字节的数量	
4	单元标识符	1 个字节	复制主站请求标识符	
5	0x05(命令码)	1 个字节	写单线圈	
6	线圈地址	2 个字节	高位在前,低位在后,见线圈编址	
7	线圈状态	2 个字节	高位在前,低位在后。非 0 即为有效	

4.4 命令码 0x06 (06): 写单个寄存器

请求帧格式:事务元标识符+协议标识符+长度+单元标识符+0x06+寄存器地址+寄存器值

序号	数据(字节)意义	字节数量	说明	
1	事务元标识符	2 个字节	MODBUS 请求/响应事务处理的识别码	
2	协议标识符	2 个字节	0=MODBUS 协议	
3	长度	2 个字节	以下字节的数量	
4	单元标识符	1 个字节	主站请求标识符	
5	0x06(命令码)	1 个字节	写单寄存器	
6	寄存器地址	2 个字节	高位在前,低位在后,见寄存器值编址	
7	寄存器值	2 个字节	高位在前,低位在后。非 0 即为有效	

响应帧格式:事务元标识符+协议标识符+长度+单元标识符+0x06+寄存器地址+寄存器值

序号	数据(字节)意义	字节数量	说明	
1	事务元标识符	2个字节	MODBUS 请求/响应事务处理的识别码	
2	协议标识符	2 个字节	0=MODBUS 协议	
3	长度	2 个字节	以下字节的数量	
4	单元标识符	1 个字节	复制主站请求标识符	
5	0x06(命令码)	1 个字节	写单寄存器	
6	寄存器地址	2 个字节	高位在前,低位在后,见寄存器编址	
7	寄存器值	2个字节	高位在前,低位在后。非 0 即为有效	

4.5 命令码 0x0f (15): 写多个线圈

请求帧格式: 事务元标识符+协议标识符+长度+单元标识符+0x0f+线圈起始地址+线圈数量+字节数+线圈状态。

序号	数据(字节)意义	字节数量 说明	
1	事务元标识符	2 个字节	MODBUS 请求/响应事务处理的识别码
2	协议标识符	2 个字节	0=MODBUS 协议
3	长度	2 个字节	以下字节的数量
4	单元标识符	1 个字节	主站请求标识符
5	0x0f(命令码)	1 个字节	写多个单线圈
6	线圈起始地址	2 个字节	高位在前,低位在后,见线圈编址
7	线圈数量	2 个字节	高位在前,低位在后(N)。N 最大为 1968
8	字节数	1 个字节	值: 值: [(N+7)/8]
	9 线圈状态	[(N+7)/8]个 字节	每8个线圈合为一个字节,最后一个若不足8位,未
9			定义部分填 0。前 8 个线圈在第一个字节,最地址最
			小的线圈在最低位。依次类推

响应帧格式: 事务元标识符+协议标识符+长度+单元标识符+0x0f+线圈起始地址+线圈数

序号	数据(字节)意义	字节数量	说明	
1	事务元标识符	2 个字节	MODBUS 请求/响应事务处理的识别码	
2	协议标识符	2 个字节	0=MODBUS 协议	
3	长度	2 个字节	以下字节的数量	
4	单元标识符	1 个字节	复制主站请求标识符	
5	0x0f(命令码)	1 个字节	写多个单线圈	
6	线圈起始地址	2 个字节	高位在前,低位在后,见线圈编址	
7	线圈数量	2 个字节	高位在前, 低位在后。	

4.6 命令码 0x10 (16): 写多个寄存器

请求帧格式:事务元标识符+协议标识符+长度+单元标识符+0x10+寄存器起始地址+寄存器数量+字节数+寄存器值

序号	数据(字节)意义	字节数量	说明
1	事务元标识符	2 个字节	MODBUS 请求/响应事务处理的识别码
2	协议标识符	2 个字节	0=MODBUS 协议
3	长度	2 个字节	以下字节的数量
4	单元标识符	1 个字节	主站请求标识符
5	0x10(命令码)	1 个字节	写多个寄存器
6	寄存器起始地址	2 个字节	高位在前,低位在后,见寄存器编址
7	寄存器数量	2 个字节	高位在前,低位在后(N)。N 最大为 123
8	字节数	1 个字节	值: N*2
9	寄存器值	N*2	

响应帧格式:事务元标识符+协议标识符+长度+单元标识符+0x10+线圈起始地址+线圈数量。

序号	数据(字节)意义	字节数量	说明	
1	事务元标识符	2 个字节	MODBUS 请求/响应事务处理的识别码	
2	协议标识符	2 个字节	0=MODBUS 协议	
3	长度	2 个字节	以下字节的数量	
4	单元标识符	1 个字节	复制主站请求标识符	
5	0x10(命令码)	1 个字节	写多个寄存器	
6	寄存器起始地址	2 个字节	高位在前,低位在后,见寄存器编址	
7	寄存器数量	2 个字节	高位在前,低位在后。	

4.7 错误响应帧

作为通信从站,控制器接收到主站发送的通信帧结构错误、不支持的控制字、寄存器地址错误、数据超限错误等,就会回复"错误响应"帧。

错误响应: 事务元标识符+协议标识符+长度+单元标识符+(命令码+0x80)+错误码。 本错误帧适合所有的操作命令帧。

序号	数据(字节)意义	字节数量	说明
1	事务元标识符	2 个字节	MODBUS 请求/响应事务处理的识别码
2	协议标识符	2 个字节	0=MODBUS 协议
3	长度	2 个字节	以下字节的数量
4	单元标识符	1 个字节	复制主站请求标识符
5	命令码+0x80	1 个字节	错误命令码
6	错误码	1 个字节	1~4